

ADVANCED HEAT RECOVERY TECHNOLOGY

Neil Robinson

Introduction

- NRG WORX,
 - A newly formed group of industry specialists which brings together over 40 years of power plant development experience and capability
 - Our niche market is the provision of specialized technology to the power generation industry that will
 - Reduce Fossil Fuel Consumption
 - Reduce Emissions
 - Reduce Noise
 - Reduce Capital Expenditure
 - Reduce Operation and Maintenance Burdens
 - Improve Power Plant Efficiency
 - Solutions include
 - Project Development
 - IPP
 - BOOT
 - BOO
 - EPC
 - Technology Provision

Technology Brief

- The technology we are currently offering for your application has been available for several decades albeit, in a much smaller scale,
- The old technology primarily focused on low quality heat sources, such as cooling water circuits in diesel and gas engines, circa 3 to 500KW units,
- However In recent times the traditional Organic Rankine Cycle (ORC) technology has undergone a significant step change, and can now compete head to head with traditional Gas Turbine Combined Cycle Technology,
- This step change has delivered
 - Utility Size Solution modules up to 15MW
 - Improved Process Performance, (circa 51%)
 - Reduced Capital Costs,
 - Full Modularisation
 - Rapid Site Installation

ORC Process

Overview

- The technology uses an organic fluid, in this case Oil to absorb the waste heat exiting the Exhaust Stack of a Gas Turbine via a heat exchanger
- The Oil is circulated from the exhaust heat exchanger to the skid mounted ORC unit, which via a second heat exchanger allows the heat to be transferred from the oil to a closed loop gas circuit, in this case a refrigerant which expands when heated.
- The energy in the expanded gas is utilized via an expander to drive the generator, and produces electrical energy at 11KV
- The energy depleted expanded gas is then circulated through a cooling loop, (air cooled condenser) and is delivered back to the skid mounted heat exchanger to begin the cycle again

ORC Module

CCGT v ORC Comparison

 Conventional CCGT v Heat To Energy Technology (ORC) (Based on a 120MW CCGT 2-2-1 configuration)

	CCGT	ORC
Capex	100%	90%
Installation Time	26 Months	16 Months
Consumes Water	Yes	No
Efficiency (LM6000PD)	51%	51%
Operations Resources	18 (3 shift systems, 6 men per shift)	0(Unmanned)
Maintenance Cycles	8760	hrs
50 to 70,000 hrs	S	

NOTE COMPLETELY UNMANNED COMBINED CYCLE POWER PLANT, OPERATED AND DESPATCHED REMOTELY

ORC Recovery Model NRGwork

Typical Performance

		LM6000	Frame 6B	FT8-3
Resource inlet temp	°C	480	477	420
Expected outlet temp	°C	149	137	135
Resource Flow	kg/s	136.4	143	108
Capacity factor	%	90%	90%	90%
Condensers		Air-cooled	Air-cooled	Air-cooled
Heat capacity	\mathbf{MW}_{net}	10.5	11.5	11.3

- UNMANNED OPERATION
 - Simple start stop procedures
 - Automatic and continuous operation
 - Partial load operation down to 10% of nominal power
 - Partial load conditions are obtained by modulating a 3 way valve to enable the ORC to automatically respond to external load variations
 - High efficiency even at 50% of nominal load, (electrical efficiency is circa 90% of nominal electrical efficiency)
 - No operator Attendance needed, due to the absence of a high pressure vapor generator (HRSG)
 - Quiet operation
 - High Availability circa 98%
 - Low Maintenance requirements, circa 3 5 hrs per week
 - Long Life, more than 20 years

Technical Features

- Low Complexity
 - Low RPM, i.e. no reduction gears needed for the generator
 - No raw water treatment plant needed
 - No demineralized water treatment plant needed
 - No Chemical dosing plant
 - No working fluid superheating
 - No high pressure steam generator
 - No corrosion issues
 - Added thermal Stability
 - Simpler control system architecture
 - Three simple blocks construction
 - Heat Exchanger
 - ORC unit
 - Air cooled condenser

Commercial Overview

Levelised Cost of Energy (LCOE) = \$150/MWhr (Gas \$10/GJ)

- LCOE = (b*c) / (P*H) + f/h + OM/H + m *OM (n,b)
 - Where
 - » b = Levelised carrying charge factor of cost of money
 - » c= Total plant cost
 - » H = Annual operating hours
 - » P = Net rated output (kw)
 - » F = Levelised cost of fuel (\$/kwh)
 - » H = Net Rated efficiency of the plant (LHV)
 - » OM = Fixed O&M costs for base load operation (\$/kwhr)
 - » (n,b) = Variable O&M costs for base load operation, (\$/kwhr)
 - » M = Maintenance cost escalation factor

Annual Fuel saving circa \$7.25M

- Basis of Comparison
 - 2 LM6000PD
 - Gas Fuel @ \$10/GJ
 - Location North West of WA
 - Base Load Operation

Typical Site Layout

Overall Space Required,
Circa 100M x 40M

24,000 mm

Modular Design

- Designed for easy transport
- Simple install and assembly
- Phased Capital Spending Matched to Resource Availability

Typical Heat Exchanger

